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ABSTRACT
“Resynthesizing Perception” immserses participants within
an audiovisual augmented reality using goggles and head-
phones while they explore their environment. What they
hear and see is a computationally generative synthesis of
what they would normally hear and see. By demonstrating
the associations and juxtapositions the synthesis creates, the
aim is to bring to light questions of the nature of represen-
tations supporting perception. Two modes of operation are
possible. In the first model, while a participant is immersed,
salient auditory events from the surrounding environment
are stored and continually aggregated to a database. Simi-
larly, for vision, using a model of exogenous attention, proto-
objects of the ongoing dynamic visual scene are continually
stored using a camera mounted to goggles on the partic-
ipant’s head. The aggregated salient auditory events and
proto-objects form a set of representations which are used to
resynthesize the microphone and camera inputs in real-time.
In the second model, instead of extracting representations
from the real world, an existing database of representations
already extracted from scenes such as images of paintings
and natural auditory scenes are used for synthesizing the
real world. This work was previously exhibited at the Vic-
toria and Albert Museum in London. Of the 1373 people to
participate in the installation, 21 participants agreed to be
filmed and fill out a questionnaire. We report their feedback
and show that “Resynthesizing Perception” is an engaging
and thought-provoking experience questioning the nature of
perceptual representations.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Artificial, aug-
mented, and virtual realities

1. INTRODUCTION
Many theories of perception suggest that our perception

is derived from internal representations of the sensory infor-
mation entering our senses but that we are unaware of their
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details [1, 9, 8]. These representations, denoted by salient
auditory events and visual proto-objects, are theorized to be
the latest stage of pre-attentive processing and the earliest
stage of representation acted upon by attentional machinery.
They also do not require semantics or language in order to
be represented, but rather provide a basis for understanding
objects and events in the world. As we do not have access
to them, what are the representations supporting these pro-
cesses? How are they modeled, what do they look or sound
like, what can they explain, and what can they not explain?
Rather than attempt to answer these questions through the
traditional sciences, we attempt to open a dialogue around
them through an arts practice.

This practice is defined by scene synthesis: a computa-
tionally generative collage process making use of a compu-
tational model of salient auditory events and visual proto-
object representations. We place participants within a real-
time audiovisual scene synthesis using virtual reality goggles
and headphones. Representations of the auditory and visual
scenes as measured by a microphone and a head-mounted
camera are continually learned while the participant expe-
riences an ongoing scene synthesis process. In one scenario,
no explicitly predefined database is used for synthesizing the
ongoing scene. Rather, the scene is recreated using sonic and
visual representations the software learns over time. By con-
tinually associating the incoming input with its aggregated
stored representations, we attempt to create syntheses ques-
tioning how associations in similar representations may be
perceived and re-contextualized.

Ideally, the stored representations will allow for a synthe-
sis indistinguishable from its target. However, what happens
when they are entierly unlike the stimuli? For instance, what
if we have only learned representations of the sonic world of
’trees’ and ’birds’. How would we then synthesize an acous-
tic scene full of voices? Or in the visual case, what if we had
only formed representations composed by paintings of Hi-
eryonomous Bosch, and then had to synthesize the natural
visual world as we are used to it? In a second scenario, we al-
low participants to ask these questions by choosing pre-built
models which have been trained on databases of various vi-
sual scenes such as those depicted in paintings by Bosch,
Van Gogh, and Monet, for the visual synthesis, and scenes
such as different musical genres or natural auditory scenes,
for the auditory synthesis.

We first contextualize our work within related arts prac-
tices. We then briefly motivate our computational models
of auditory and visual representations based on literature
in auditory streaming and proto-objects, respectively, and
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then describe our methods. We then show a few example
syntheses and report feedback from an exhibition in London
at the Victoria and Albert Museum in 2012.

2. RELATED PRACTICES
Our synthesis process can be seen as a form of a com-

putationally generative collage. Historically, collage is an
arts practice which appropriates fragments of culture for its
materials. Depending on its medium, it juxtaposes, often
chaotically, fragments such as photographs or clips of sound,
removing them from their original context. By doing so, it
is capable of communicating new interpretations which the
original fragments alone could not have provided.

The juxtaposition of fragments of sound as an arts prac-
tice has roots at least as early as musique concrète, a compo-
sitional technique assembling various natural found sounds
in order to produce a collage of sound. Digital Sampling
came in the 1970’s allowing sound segments to be triggered
using an interface such as a keyboard or pad. More recent
techniques have focused on granuar or concatenative synthe-
sis, where a target sound is matched to a stored database
of segments or sounds (for a more in-depth review of these
practices, see [3]).

Visual collage practices making use of computation are
abundant within graphics communities, and have taken var-
ious forms from compositing, texture synthesis, example-
based synthesis, and various methods for artistic stylization.
Indeed our own synthesis engine is a repurposing of a pre-
vious artistic stylization framework known as corpus based
visual synthesis [5, 3].

3. METHODS

3.1 Augmented Reality
The exhibition in 2012 had participants wear the Vuzix

Wrap920AR goggles. These goggles house two small CRT
screens (640 x 480 @ 30Hz with 31 degree field of view),
with two front-facing cameras. Due to procesing limitations,
only one camera feed was synthesized and displayed on both
CRT screens. Since then, this work has been migrated for
the Oculus Rift with a camera mounted to the front, as this
setup offers an increased field of view and a design which
masks all light except for the display. The processing occurs
on a laptop nearby, meaning participants are only able to
explore as far as the length of the cable (2 meters).

Participants were also invited to wear a pair of head-
phones, a Beyerdyanmic DT 770 Pro. These were chosen
as being comfortable to wear, sanitary (i.e. as opposed to
in-ear monitors), and having excellent acoustic isolation due
to its closed ear design. The processing for audio occurs on
an iPhone, as the application is self-contained in the iOS
app, “Memory Mosaic”, freely available on the app store1

[3].

3.2 Computational Synthesis Engine

3.2.1 Visual
Our visual model attempts to actively describe a visual

scene, simulating the movements of the eye using an exoge-
nous attention model [6], and representing a scene by its

1https://itunes.apple.com/us/app/memory-mosaic/
id475759669?mt=8

(a) Original Image (b) Visual Acuity Filter

Figure 1: 1a: Original frame; 1b: Examples of how the
exogenous attention map (inlayed in the image) is used to
simulate the point of fixation (drawn as a black/white circle
as seen over the man potting).

proto-objects [8, 5, 3]. This model effectively describes the
shape and color of finer detailed regions at points of likely
fixations, and coarser details in places less likely to be fix-
ated. To do so, we first use a previously motivated model of
exogenous attention to define the dynamic visual salience of
the scene built using contrasts in a dense optical flow map
[6, 3]. The point of highest saliency along with the entire
saliency map’s entropy is then fed to visual acuity filter sim-
ulating the logarithmic drop in spatial resolution outside of
the point of fixation. An example in shown in Figure 1. As
the entropy is low, the blurring is quite substantial, remov-
ing many of the details more likely to be unattended such
as the high frequency edges in the bricks, grass, and leaves.

The output of this image is then used for corpus based
visual synthesis (CBVS) [5]. The underlying algorithm of
CBVS, maximally stable color regions [2], affords us the abil-
ity to sort coarse to fine blobs based on their level sets. We
can further define the coarse to fine precision using simple
parameters such as timesteps and placing a threshold on the
minimum region size. For real-time aggregation of content,
we only aggregate proto-objects every 300 ms, as this tempo-
ral resolution is also the average time of a fixation [6]. Only
proto-objects whose description falls beyond a threshold of a
metric computing color and shape similarity are stored. As
space is limited, we refer the reader to the paper on CBVS
for more details, including examples of visual synthesis using
corpora of Van Gogh, Monet, Klimt, and others [5, 3].

In Figures 2 and 3, we show two examples of visual scene
synthesis. We also show an example of visual scene syn-
thesis using an alternate database of Hieryonymous Bosch,
producing the scene in Figure 2d. In the latter example, we
also reveal more of the attention map (3b), its effect on the
visual acuity map (3c), and how this distributes the spatial
scale of proto-objects (3d).

3.2.2 Audio
Our auditory model is inspired by auditory streaming [1]

and evidence of event related potentials demonstrating the
brains remarkable ability to detect temporally incoherent
auditory events even without our attention to the task (e.g.
mismatch negativity) [9]. We model event detection, store
them, and then use the same events for resynthesizing any
newly detected salient auditory events. The saliency of an
event is denoted by its temporal incoherence, which is de-
scribed by the event’s ability to explain the current auditory
model (described in [4, 3]). This model is represented as
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(a) Original video feed (b) Proto-objects

(c) Visual synthesis (d) Visual synthesis using Bosch

Figure 2: An example of the real-time visual synthesis. 2a
Original image. 2b Proto-objects. 2c Visual synthesis using
an aggregated database of the same scene. 2d Visual syn-
thesis using a database of Hieryonomous Bosch paintings.

(a) Input image (b) Attention map

(c) Visual acuity map (d) Proto-object image

(e) Synthesized image (f) Another synthesized image

Figure 3: Example processing for producing visual synthe-
ses. The input video 3a is analyzed for the most likely focal
point in 3b. This point is used in the synthetic acuity map
shown in 3c. This image is used in finding the proto-objects
shown in 3d. And finally matched to the existing database
to produce the example syntheses in 3e and 3f.

(a) Waveforms

(b) Spectrums

Figure 4: Here we visually represent auditory scene syn-
thesis as its signal and spectrogram. The clip is of David
Attenborough documenting the Lyre bird. The original is
displayed on top of the synthesis in each case.

a Gaussian Mixture of Mel-Frequency Cepstral Coefficients,
their deltas, and their delta deltas. Due to space constraints,
we refer the reader to the full implementation details for our
event detection model in [4, 3].

Once events have been segmented, their features are con-
catenated, and matching is done using dynamic time warp-
ing. We optimize for real-time performance using recent
boundary constraints [7] and for Apple hardware using the
Accelerate framework (source code freely available online at
github.com/pkmital. Finally, synthesis is performed using
the Dirac3 LE Time Stretching algorithm2. This allows for
sequence matches with different lengths to be played back
without changing the pitch of the original sample.

In Figure 4, we show an example of audio scene synthesis
represented as its original and synthesized waveforms and
spectrograms. Notice how the first few large jumps in the
original signal’s amplitude are matched quite well for their
spectra, though not in amplitude. In the later parts of the
audio file, the synthesis appears much closer in amplitude,
as it has learned more loud sounds, while the spectra is still
matched fairly well, though with significant discontinuities.

4. FEEDBACK
Feedback was collected during an exhibition called “Aug-

mented Reality Hallucinations” held at the Victoria and Al-
bert Museum in London in 2012 during the Digital Design
Weekend (part of the London Design Festival). The exhi-
bition ran for 2 days from 10 a.m. to 5 p.m. The total
number of people attending my exhibit alone as reported
by the V&A Museum on Saturday was 445 adults and 128
under 18s and on Sunday, 590 adults and 210 under 18s for
a total of 1373 people. Of these, 21 participants agreed to
be filmed, photographed, and fill out a questionnaire.

On the feedback form (see [3] for the form and full de-
tails of the participant’s responses), participants made many
qualitative comments regarding the visual aesthetics. For
instance, when participants were asked, “Did this experi-
ence make you think of anything you had seen or heard
before?”, three participants made references to their experi-
ences on hallucinogens and two to dreams. Also of note in

2dirac.dspdimension.com
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the qualitative feedback were references to art styles such
as, “It reminded me of Francis Bacon’s Figurative style”
and “The movement was Impressionistic, almost painterly”.
When asked, “What did you dislike most about the experi-
ence?”, of note were the responses, “Would have liked more
depth in colour”, “Not sure what I was seeing at first with
the goggles”, and “Hard to understand how it works.”

Quantitative feedback is summarized in Figure 6. The
feedback demonstrates that participants overall rated the
visual experience higher than the auditory experience. One
possible reason for this may be expressed in the qualititative
feedback, with one participant writing, “The granular-like
sound is a bit too extreme with headphones.” Though an-
other participant also found that “The sound was definitely
an enhancement. Not quite the same without.”

Participants also made a number of comments regarding
perception. When asked what they liked about the experi-
ence, participants wrote, “the changing of the perception of
reality”, “it made me think of how our brain deconstructs
and reconstructs elements of perception, particularly in the
goggles”, “the effect on my perception about the environ-
ment and myself as well”.

Augmented Reality Hallucinations was also featured in
the article, “See Like A Bug On Acid”, on the media blog
createdigitalmotion.com. Editor in-chief Peter Kirn says
of the work, “What’s great about this project is the way in
which it alters reality - with the aid of video input”.

Figure 5: A few participants of the installation wearing the
AR goggles. Headphones (shown in the top picture to the
left) were worn at times, though are not shown being worn
here. Photos by the author. Participants gave written con-
sent to be photographed.

5. CONCLUSION
We have described “Resynthesizing Perception”, an aug-

mented reality experience employing a computational model
of visual and auditory perception to synthesize the world
around us. It functions in two possible modes: (1) by aggre-
gating representations learned from the world, and (2), by

Figure 6: Feedback where 21 participants were asked to rate
different aspects of the auditory and visual synthesis. Error
bars depict +/- 1 S.E.

using a predefined database of representations learned from
different scenes such as those of painters and auditory scenes
of nature or different musical recordings. By demonstrating
the associations and juxtapositions the synthesis creates, its
aim is to bring to light questions of the nature of represen-
tations supporting perception. One failing of the model has
been that we consider either modality separately. Certainly
many multisensory and crossmodal effects have been demon-
strated in the literature (e.g. the auditory override of visual
perception as demonstrated in the double flash illusion and
the visual override of auditory perception as demonstrated
in the McGurk effect). It would be interesting to explore
such interactions in the future.
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